Attractor Dynamics in Feedforward Neural Networks

نویسندگان

  • Lawrence K. Saul
  • Michael I. Jordan
چکیده

We study the probabilistic generative models parameterized by feedforward neural networks. An attractor dynamics for probabilistic inference in these models is derived from a mean field approximation for large, layered sigmoidal networks. Fixed points of the dynamics correspond to solutions of the mean field equations, which relate the statistics of each unit to those of its Markov blanket. We establish global convergence of the dynamics by providing a Lyapunov function and show that the dynamics generate the signals required for unsupervised learning. Our results for feedforward networks provide a counterpart to those of Cohen-Grossberg and Hopfield for symmetric networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه

In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...

متن کامل

Attractor Networks for Shape Recognition

We describe a system of thousands of binary perceptrons with coarse-oriented edges as input that is able to recognize shapes, even in a context with hundreds of classes. The perceptrons have randomized feedforward connections from the input layer and form a recurrent network among themselves. Each class is represented by a prelearned attractor (serving as an associative hook) in the recurrent n...

متن کامل

Nonlinear enhancement of noisy speech, using continuous attractor dynamics formed in recurrent neural networks

Here, formation of continuous attractor dynamics in a nonlinear recurrent neural network is used to achieve a nonlinear speech denoising method, in order to implement robust phoneme recognition and information retrieval. Formation of attractor dynamics in recurrent neural network is first carried out by training the clean speech subspace as the continuous attractor. Then, it is used to recogniz...

متن کامل

Feedforward Approximations to Dynamic Recurrent Network Architectures

Recurrent neural network architectures can have useful computational properties, with complex temporal dynamics and input-sensitive attractor states. However, evaluation of recurrent dynamic architectures requires solving systems of differential equations, and the number of evaluations required to determine their response to a given input can vary with the input or can be indeterminate altogeth...

متن کامل

Balanced neural architecture and the idling brain

A signature feature of cortical spike trains is their trial-to-trial variability. This variability is large in the spontaneous state and is reduced when cortex is driven by a stimulus or task. Models of recurrent cortical networks with unstructured, yet balanced, excitation and inhibition generate variability consistent with evoked conditions. However, these models produce spike trains which la...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 12 6  شماره 

صفحات  -

تاریخ انتشار 2000